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A FAST ITERATIVE METHOD TO COMPUTE THE FLOW 
AROUND A SUBMERGED BODY 

JOHAN F. MALMLIDEN AND N. ANDERS PETERSSON 

ABSTRACT. We develop an efficient iterative method for computing the steady 
linearized potential flow around a submerged body moving in a liquid of fi- 
nite constant depth. In this paper we restrict the presentation to the two- 
dimensional problem, but the method is readily generalizable to the three- 
dimensional case, i.e., the flow in a canal. The problem is indefinite, which 
makes the convergence of most iterative methods unstable. To circumvent this 
difficulty, we decompose the problem into two more easily solvable subprob- 
lems and form a Schwarz-type iteration to solve the original problem. The 
first subproblem is definite and can therefore be solved by standard iterative 
methods. The second subproblem is indefinite but has no body. It is there- 
fore easily and efficiently solvable by separation of variables. We prove that 
the iteration converges for sufficiently small Froude numbers. In addition, 
we present numerical results for a second-order accurate discretization of the 
problem. We demonstrate that the iterative method converges rapidly, and 
that the convergence rate improves when the Froude number decreases. We 
also verify numerically that the convergence rate is essentially independent of 
the grid size. 

1. INTRODUCTION 

The subject of this paper is an efficient, Schwarz-type, iterative method for 
computing the steady linearized potential flow around a submerged body moving 
in a liquid of finite constant depth. Let the depth of the liquid be d, the speed 
of the body be U and the acceleration of gravity be g. After scaling the physical 
quantities by the length d and the velocity /gd, we get the problem depicted in 
Figure 1. The total velocity potential is split into the sum of a free stream potential 
and a perturbation potential; 1(x, z) = ,ux + 0(x, z), where t = U/lgd is the 
Froude number. The perturbation potential is governed by, cf. [18, pp. 431-448], 

(1) AX = O, -oo<x<x, -1 <z<O. 

together with the boundary conditions 
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FIGURE 1. The linearized problem 

2oxx + qz =O. -Xo < x < x, z =O. 

(2) qZ _0, -o < x < oo, z =-1, 
00/0n + ,u cos 0 0, on the body. 

Here, 0/0n denotes the outward normal derivative and 0 is the angle between 
the normal and the x-axis. We are looking for a solution where the perturbation 
potential tends to zero at large distances in front of the body. This condition is 
called the upstream condition, 

(3) lim =0, -1 < Z < 0. 
x-00 

Three main classes of numerical techniques have previously been used to solve 
the present problem. These are based on boundary integral methods, finite ele- 
ment techniques and finite difference formulations. There are two different types 
of boundary integral methods. The first uses a kernel which satisfies the bound- 
ary condition on the free surface and the upstream condition, cf. [7, 14]. In this 
method, there are only dependent variables along the surface of the body. However, 
the kernel is rather difficult and expensive to evaluate numerically [15]. The second 
boundary integral method employs a kernel which does not satisfy any boundary 
conditions but is easy and inexpensive to evaluate, cf. [6, 9, 20]. Here, the dependent 
variables are located along the boundary of the body and on the infinite surface, 
which needs to be truncated in the numerical approximation. A number of imple- 
mentations of these two boundary integral approaches were competitively compared 
to towing-tank experimental data in [11]. The finite element techniques are based 
on dividing the fluid domain into two subdomains, one close to the body and one 
outer domain. The domain close to the body is discretized by finite elements and 
analytical solutions are used ahead of and behind the body. This approach, called 
the hybrid or localized finite element method, is pursued in [3, 10, 13, 19]. Similar 
to the finite element technique, the finite difference methods [16, 17] divide the 
infinite domain into one region close to the hull, where the solution is computed 
numerically, coupled to the outer domain by far-field boundary conditions. 

All the previous methods have in common that they must solve the linear system 
that emanates from the discretization procedure. In the boundary integral method, 
the matrix is full and has dimension equal to the number of boundary points. In 
the finite element technique and the finite difference method, the discretization 
procedure yields a sparse matrix with dimension equal to the number of points in 
the flow field. Owing to memory and work requirements, it is very expensive to solve 



ITERATIVE METHOD FOR FLOW AROUND SUBMERGED BODY 1069 

three-dimensional counterpart of the present problem. The continuous problem 
(1-3) is indefinite, which implies that also the linear system is indefinite, regardless 
of the discretization method. This makes the convergence of most iterative methods 
unstable. To circumvent this difficulty, we propose a novel iterative technique where 
the problem is decomposed into two more easily solvable subproblems that are 
coupled by a Schwarz-type iteration such that the original problem is solved upon 
convergence. In this paper we expound the method for the two-dimensional case, 
but the technique is readily generalizable to the three-dimensional problem [12]. 

The first subproblem, which will be referred to as the definite subproblem, is 
defined by 

(4) OI = 0, -X <X < X, -1< Z< 0, 

together with the boundary conditions 

(5) oz,~X = 01 -X <X <0X, Z= 0, 

(6) oz, = O. -00 < x < o0, Z = -1, 

(7) &I'/&n = h, on the body. 

To fix the undetermined constant in this Neumann problem we enforce 

(8) lim q 0O, -1<z<O. 
x-00 

The second subproblem, which will be called the indefinite subproblem, does not 
have a submerged body in the interior of the domain. It is governed by 

(9) A OtII = 01 -X < X <0 X,1 < Z< 

subject to the boundary conditions 

(10) A24?q$X'=t, -o <x< o, z O 
(ll) x~~~~~II = 01 -X0 < X < X,1 Z=-. 

In order to make the solution unique, we enforce the upstream condition, 

(12) lim q5" ?, -1 < z < 0. 
x-00 

The first subproblem is definite and can therefore be solved by standard iterative 
methods. The second subproblem is indefinite but has no body. It is therefore easily 
and efficiently solvable by separation of variables. That solution method will be 
described in ?2. 

The solutions of the subproblems are well defined once the forcing functions h 
and t are determined. It is clear that XI + XII will solve (1-3) if we can find 
functions t and h that, simultaneously satisfy t(x) = -,u20x(x, 0) and h(s) 
-,ucosO(s) - 00II5/n(xb(s), Zb(S)), where the boundary of the body is described 
by x = Xb(S), z = Zb(S), 0 < s < 1. We compute t and h by iteration. We take the 
initial guess to be 0II(0) (X, z) 0 0 and iterate according to 

1. Set h(@)(s) =-,ucosO(s) - 0II('-)/&n(xb(s),zb(s)) and solve the definite 
subproblem for I(i). 

2. Set t(i)(x) =-,u2o/(j)(x, 0), and solve the indefinite subproblem for XII(i). 

The main result of this paper, which is proven in ?3, is that the iteration con- 
verges for sufficiently small Froude numbers. In order to demonstrate the conver- 
gence numerically, we truncate the infinite domain and introduce far-field boundary 
conditions in ?4 to carry out the practical computation. In ?5 we present numerical 
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results for a second-order accurate discretization of (1-3). We show that the iter- 
ative method converges rapidly, and that the convergence rate improves when the 
Froude number decreases. We also verify numerically that the convergence rate is 
essentially independent of the grid size. Perhaps more surprising is that the itera- 
tive method requires less CPU-time than the direct solver described in [17], already 
for two-dimensional problems. 

2. THE INDEFINITE SUBPROBLEM 

To solve the indefinite subproblem, we split the solution according to qII 

qha +? q. The idea is to use qa to move the inhomogeneity from the surface boundary 
condition to an inhomogeneity for the Laplace equation and then solve the resulting 
problem for qS by separation of variables. Henceforth, we assume that (9) is satisfied 
on the boundary z = 0 and make the substitution II = -II in (10). The auxiliary 
function Oa must satisfy 

-2q$z ?qOa= t, -oo)< X<oo, z0, (13) q$ =0, -oIxoz=1 ( 1 3 ) - X b 2 , ? ) a ~ Za 
+ 

0f 
z - 0 0 < X < (0 )1 Z - 0 

In the interior, Oa is only required to be smooth. We will use the following simple 
solution: 

(14) Oaa(X, Z) = t(x>) + Z). 
2(1 -/2 

In order to make Oa + q5S satisfy (9-12), we must have 

(15) A0s = f, -(X < X < oo, -1 < Z < 0, 

where f (x, z) = -iAqs(x, z), together with the boundary conditions 

(16) q =0, -oI~o~=1 (16) -Xb2G>5 +ffi=-? -00 < X < 00) Z =1 

To separate variables, we make the ansatz 
00 

(17) 03S(x z) = ER(k)(X)s( )(Z)) 
k=O 

where 

S(0)(z) = 1, 
(18) S(1) (z) = cosh V(1 + z), 

S(k) (Z) = COS A4k(l + Z), k = =223. 

By studying dS(k) /dz, cf. [16], it is easy to see that {S(k)} form a complete set in 
L2 [-1, 0]. Furthermore, they are orthogonal in the sense 

(19) | dz dz dz = 0, p + q. 

The eigenvalues are given by the relations 

(20) 2 =tanh A-, 2V = tan VA/, k =2,3... 

Henceforth, we assume that 0 < t < 1. This implies a real V/'X. The functions cosh z 
and cos z are symmetric in z; we will therefore only consider positive V'X and 4k. 
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If we enter the ansatz (17) into (15) and expand the right-hand side according 
to 

00 

(21) f(Xz) = Z!(k)(X)S(k)(Z) 
k=O 

we arrive at the following system of ordinary differential equations: 

(22) -(O 
dx2 f (X), 

(23) ?2R~l) AR 
- (l)(x), 

dx2 
d2 R(k) _ k)k -()() (24) dx2 1(k)(x), k =23,. 

Next, we express the functions f(k) (x) in terms of t(x). To clarify the notation, 
we define &k) : dS(k)/dz, k = 1, 2,3, .... We also define the inner product and 
norm in the z-direction, 

(25) (ab)z j abdz, 1al= (a,a)z. 
-1 

By differentiating (21) in the z-direction we get 
00 

(26) f(XZ) = f(k) (X)4(k) (Z) 
k=1 

The orthogonality relation (19) yields 

(27) I(k)(x) - ,Z (X ) ' k = 1,2,3,... 

By inserting (14) into fz(XI z) =-_Aa(X, z) and evaluating the scalar products 
and norms analytically, we get 

_(1) (X) -4t"(x) sinh V-V - cosh V2 
1-u2 2A3/2-Asinh2V 

(28) = ( 2coh2v'Xr 1)' 

f (k)(x) - -4t"(x) sin - A _ 2 oA 

1 _ 2 2Ik -ik sin 2V 
(29) 2t" cos / 

Ai(1 -cosh2 cos2- ~) 
I 

We cannot use the same technique to evaluate f(?), because dS(?) /dz 0 . In- 
stead we use (21) and compute f () once the other coefficients are known, i.e., 

00 

f (X) f(X, z) - S !(k) (x)S(k) (Z). 

k=l 

This equation is valid for all values of z, but the choice z =-1 makes the occurring 
expressions particularly simple. By inserting (28) and (29) we get 

(30) f(X)(X) t(x) - 2t"(x)Q, 

1-1 
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where 

-coshV' NA COS V' 
(31) Q A(,u cosh VA1) k=2 Ik (1 t os ) 

3. ANALYSIS OF THE ITERATION 

In this section we prove convergence of the iteration for sufficiently small Froude 
numbers. The proof consists of estimates of the solutions to the two subproblems. 
In ?3.1, we estimate the x-derivatives of the solution to the definite problem at the 
surface in terms of the forcing h on the body. Thereafter, in ?3.2, we derive estimates 
for the x- and z-derivatives of the solution to the indefinite problem in terms of 
the forcing t along the surface. These estimates will be used to bound the normal 
derivative of the solution to the indefinite problem along the fictitious boundary of 
the body. These two estimates are combined in ?3.3 to prove convergence of the 
iteration. 

Henceforth, C will denote a generic constant which is independent of At. 

3.1. Estimate for the definite subproblem. To begin with, we define the max- 
imum norm along the boundary of the body according to 

(32) If Ioobody = sup If (Xb(S), Zb(s)) . 
0<s<1 

Furthermore, we denote the maximum norm of a function of one or two independent 
variables by I - Ioo 

It is well known, cf. [5], that the x-derivatives of XI along the surface can be 
estimated in terms of the forcing h. We make this statement more precise in 

Lemma 1. There holds 

OpXI(i) 0 < C Ih(' ) p= 1,2,.... 
00 

where Cp are constants independent of h('). 

In the domains ahead of and behind the body, the solution of the definite sub- 
problem can be found by separation of variables. Let the body be contained in 
-/3 < x < 3. Expanding the solution in a Fourier series in the vertical direction 
yields 

00 

(33) 5I(x, z) Z oike wkjXj COS wkZ, i Wk= kir, 
k=0 

for jxj > /. Hence, the forcing function t(x) satisfies 
00 

(34) t(x) = S ikW2e -'kX < Ce-IxI, |x >3 

k=1 

3.2. Estimates for the indefinite subproblem. The purpose of this section is 
to derive bounds for the maximum norm of the x- and z-derivatives of "II in terms 
of the forcing t. To bound 5II = Oa + 5S,' we bound O>a and qS separately and add 
the results. Differentiating the solution formula (14) yields 
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Lemma 2. We have 

it/loo 1 ac.< jj~~ 
x 2(1- /2) 

1 
I~z c< tol- b 

We now consider qS. We estimate Os and O' in three steps. First we bound 
the functions f(k) in terms of the forcing t(x). Then we estimate the solution of 
the ordinary differential equations (22-24) in terms of the right-hand sides f(k). 

Finally, we bound Os and O' by summing the bounds for all the modes. 

Bounding f(k). The eigenvalue relation (20) implies V5A < ,u2. In addition, V2'A 
whn2 t- A2 cs2VXThrfe,(8 -2 when p 0. We have p cosh A > 1 for all 0 < p < 1. Therefore, (28) 

yields 

(36) <f~'~k ? C A I2 if - cosh w-: 2 t10 

where C -* 1 when t --* 0. Inspection of (29) yields directly 

(37) I(k) < 2 t?? k = 2,3,. 
-f I (1A2)1 

To bound f(O), we need to estimate Q in (31). For the eigenvalues V/4 we have 

(38) ir(k-1) < ' < 7r(k-1/2), k 2,3... 

Hence, 

00 0 

(39) z K1 < (1i+ k 2 dk)=2 

Therefore, (30) gives 

(40) If(0)loo < 1At2 (Itko0 + It"I') 

Bounding R(k). We begin by writing down the analytical solutions of (22-24). By 
integrating (22) twice we find 

(41) R(?) (x) = Ci + C2x + j j f(O) () d(. 
-00 -00 

The upstream condition (12) implies Ci = C2 0. The general solution of (23) 
can be written as: 

R(1) (x) - C3ei"X + C4e-i4x 

(42) + j2 ei (-x)f(1)(()<d 

- 2/ J ei4((x)!(1)(a) d. 
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Again, (12) yields C3 = C4 = 0. Finally, the general solution of (24) can be 
expressed according to 

R(k) (X) = C(k) evx _ C(k) e-v/4x 

(43) 2 Vk j ev( 
v 

)f(k)f() df 

By assuming the solution to be bounded at infinity we get C(k) - C(k) 0. 
The decay of t(x) given by (34) implies that the forcing functions f(k) will all 

satisfy 

(44) If(k)(X) I < I f(k) jo~e--Wlxlv k = O. 1, 2, ....I 

in JxJ >3. 
In the following, the horizontal length of the body will be denoted L = 2p. 
We bound dR(?)/dx by differentiating (41) once. This gives, 

(45) dR < CL 
dx 

The solution formula (42) yields the following bounds for RM1) and dR(1)/dx: 

(46) R(')I < CL _2lf (1)' I dx < CLIf~'~K 

In the same way, (43) yields the following estimates for R(k) and dR(k) /dx: 

(47R(k) < CL ^ dR (k) 
V~k dx 0 

where k =2, 3,4.... 

Bounding q$. By differentiating (17) with respect to x we find 

(48) q$S = 
- dR(k) (X S(k)(z). S dx~S 

k () 
k=O 

We combine (40) and (45) to get 

9 dR(?) < < CL 
(Itloo + |t'lloo) 

(49) ~~~dx _. ?1 2(t +t") 

The term dR(')/dx is bounded by using (36) and (46), 

(50) dR( S(z) ? < CLu 
2 

2 t/lO. 
dx (100)cshtk~ 

By entering (37) into (47) and using the bound (39) we arrive at 
00 

/(k\ 
00 

(51) | dR~ s(k)(Z) < 2 It"I (Wc (Nk) 1 < C 2 L 0 

omii dx 1(-49 (50 ad 

Combining (49), (50) and (51) gives 
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Lemma 3. There holds 

CL 
k/4(Q z)K ' 1 0 t2 (|tk + lt"k). 

Bounding qs. To get an equation for O', we differentiate (17) once in the z- 
direction, 

00 

(52) /4j(XIz) Z R(k)(X)((k)(Z). 
k=1 

By combining (36) and (46) and noting that < (1) ? < Cl2, the first term in the sum 
satisfies 

(53) IR(l) ((1) (Z) Ioo < (1 - /u2)coshu2l ltko. 

We get an estimate of the remaining terms by using (37) and (47). This yields, 

(54) ZR(k) ((k) (Z) < CL 
l 

k2 00 

By inserting (53) and (54) into (52) we find 

Lemma 4. There holds 

W/S(.z)400 CL 21I"loc. 

Bounding q'II and q'II. By adding the bound for Oa from Lemma 2 and the bound 
for 08 from Lemma 3, we get 

(55) l0II( z)l0 < CL (Itl+ t'l+ t"l). 

Similarly, XII is estimated by adding the bounds for Oa from Lemma 2 and the 
bound for O' from Lemma 4, 

(56) kZII(- z)(.I Z 1 < 2 (VK| + It"|) 

Hence, the sum of qI' and qI5I is bounded by 

CL 
(57) 1/'(., Z))I0 + Iz'(., Z)I oo < 1 2(Itloo + |t'oo + |t"oo). 

The definition of the forcing t(x) yields 

Lemma 5. We have 

l i(z+ q$l'(i)(.,z)l0 2 CL 2 1 OpI(i) 
p=2 0 
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3.3. Convergence of the iteration. To simplify the notation, we introduce 

(58) 1 (I )(x, z) - ( )(x, z)(-X ( ) 

(59) qfII(i)(XI Z) = OII(i)(XI Z) _ I(i-)( Z). 

We can now prove 

Theorem 1. For a sufficiently small A, the iterative method converges uniformly 
to limjc X (i) XI and limic0 0II(i) - IIp where XI + XII is a solution of 
(1-3). 

Proof. From Lemma 1 and the definition of 0) we have 

(60) 
4 

| (, 0) l? C h(') 
- = c a I(I 

p=2 ~~00 oo),body On 
oo,body 

The triangle inequality yields 

&PfII(i) ?'',O Iz~obd 

(61) On nobody< 
oo, bod + oo, bod 

< C>0 + pII(i) I. 

Therefore, Lemma 5 and (60) imply 

2 4 Pq 
< CL At2 E~ pP (I~ 0) 

(62) |OAn loobody 
- 

1 - At2 E0)| 

<CL At2 &II(il) 
1 - At2 

On 
o~od 

By choosing At so that 6 = CLIt2/(l1 p2) < 1, the contraction mapping prin- 
ciple ensures uniform' convergence, i.e., limic, 00&5(i)/&n = 00"/&n. Hence, 
limi,__ h() = h, so liminc0 OI(i) X-* OI, and therefore also liming fII(i) -I It 
follows by inspection that XI + "II is a solution of (1-3). L 

4. FAR-FIELD BOUNDARY CONDITIONS 

It is necessary to bound the computational domain and introduce artificial 
boundary conditions at the far-field boundaries to carry out the practical calcu- 
lation. Here, we truncate the domain to -b < x < b, see Figure 2. In this section, 
we will only present the boundary conditions. Their effect on the solution will not 
be analyzed. We will instead perform numerical experiments to verify that their 
influence is small if the computational domain is sufficiently large. 

For the definite subproblem, we enforce the following artificial boundary condi- 
tions: 

(63) XI'(-b, z) = 0 

(64) XI (b, z) - 0. 

These conditions are local, which makes an iterative solver easy to apply. 
In order to solve the indefinite subproblem numerically, we must replace t(x) by a 

smooth function i(x) := P(x)t(x) which has compact support in the computational 
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-b f 0f dS1 b x 

l l dS2 dS =dS+ dS2 

FIGURE 2. The computational domain 

( 0, -0 < x < -b, 

P i((-b+a+ x)/a), b - <x<-b, 
0,1(botx/) b- <x<c b, 
01O b < x< oo, 

where oa > 0 and Pi(() = 1 - 103 + 154 - 65. We will denote the solution 

of (22-24) corresponding to the modified forcing by t(k). In the domains where 
t = 0, we can solve (22-24) analytically. These analytical solutions are used to form 
relations between the solution and its normal derivative, which must be satisfied 
by any solution that is bounded at infinity and fulfills the radiation condition (12). 
These relations are used as far-field boundary conditions. They are given by 

(66) () - o, dk -= o, x = -b, 
dx 

(67) 0, d ?1 x = -b, 
dx 

(68) dx~k _ kj4(k)o, x = -b, k = 2,3,..I 

(69) dR(k) +=/R(k)O, x=b, k = 2,3,. 
dx k 

The boundary conditions are exact in the sense that they do not affect the solu- 

tion at all. The difference between R(k) and A(k), therefore, only depends on the 
difference between t(x) and i(x). 

5. NUMERICAL RESULTS 

In this section we present numerical results for a second-order accurate dis- 
cretization of (1-3). In ?5.1 and ?5.2 we comment on the numerical methods that 
were used to solve the subproblems. Thereafter, in ?5.3, we study a number of 
test cases. We show that the iterative method converges rapidly, and that the 

convergence rate improves when the Froude number decreases. We also compare 



1078 JOHAN F. MALMLIDEN AND N. ANDERS PETERSSON 

the solution with previous results obtained with a direct method [17] to indicate 
that the iteration converges to the correct solution. We verify numerically that the 
convergence rate is essentially independent of the grid size. It is demonstrated that 
the iterative method is efficient from a computational point of view; it requires less 
runtime than the direct solver already for two-dimensional problems. In addition, 
we show that the error committed by truncating the domain and introducing far- 
field boundary conditions decays exponentially with the size of the computational 
domain. 

5.1. Solving the definite subproblem. We discretize the definite subproblem by 
second-order accurate finite differences on a composite overlapping grid. To apply 
the method, we divide the domain into simple overlapping subdomains and cover 
each subdomain with a component grid, see Figure 3. The subdomain close to the 

body is covered with a curvilinear grid and the surrounding sea is covered with a 
Cartesian grid. The main advantage with this method compared to discretizing the 
whole domain with one single grid is that each component grid can be made logically 
rectangular and without singularities. The grid functions on the component grids 
are coupled by continuity requirements, which are enforced by applying sufficiently 
accurate, in this case quadratic, interpolation relations between the grid functions 
at the interior boundaries where the component grids overlap. A comprehensive 
description of this approach for a similar problem is given in [17]. 

We use the program CMPGRD to construct the composite grids. Many aspects 
of composite grids and how to use this program are described in [2, 1, 4]. We would 
like to point out that this program is capable of constructing three-dimensional 
composite grids, so this method can also be used in three dimensions. 

The resulting linear system of equations is solved by the YALE sparse matrix 
package [8]. This method requires of the order 0(n2) operations, where n equals the 
number of grid points in the composite grid. However, for two-dimensional problems 
of moderate size, it turns out to be faster than multigrid or the conjugated gradient 
method, which are asymptotically faster. 

5.2. Solving the indefinite subproblem. The number of terms in the series 
expansion (17), which equals the number of ordinary differential equations (22- 
24) that must be solved, has to be limited in order to carry out the numerical 
calculation. We found by numerical experiments that it is sufficient to retain the 
first ten terms. This is related to the fact that the solution is smooth. 

I I II. 1____ _ 
I I I I 1 - - - 

F IGR 3. Th opst velpiggi 
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We approximate the ordinary differential equations (22-24) by second-order ac- 
curate central differences. For simplicity, we use the same size of the computational 
domain and the same grid as for the definite subproblem. The tridiagonal systems 
of equations involved are solved by the subroutine DNBSL in the SLATEC package. 
The work needed to obtain a solution to the indefinite subproblem is of the order 
0(ni), where n1 is the product of the number of gridpoints in the discretization of 
one ordinary differential equation and the number of terms we retain in the series 
expansion. 

5.3. Test runs. A circle with radius 0.1 was used as test body. The center of the 
circle was submerged 0.5 below the free surface and located at x = 0, see Figure 4. 
The Froude number was 0.4 unless otherwise stated. The cutoff function (65) had 
a = 7/33. 

To show an example of the solution, we present the surface elevation above 
the test body in Figure 5. We also show the perturbation potential in the whole 
computational domain in Figure 6. 

6 0 0 

FIGURE 4. The test body; a circle with radius 0.1 
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FIGURE 5. The surface elevation above the test bodv, u =0.4 
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FIGURE 6. The perturbation potential around the test body, ,u = 0.4 

In the following, we will compare solutions in the maximum norm over the part 
of the surface in the computational domain, 

(70) Ifloosur- sup If(x,0). 
-b<x<b 

To find the order of accuracy of the iterative method, we compare solutions 
obtained with grid sizes 2h, Vh and h. The corresponding solutions are denoted 
by q2h, ?/2h and qh, respectively. The length of the computational domain is 4.5 
(b = 2.25). The number of grid points in the Cartesian grids is 17 x 86, 24 x 132 
and 33 x 172, respectively, and in the grid around the body 17 x 6, 23 x 8 and 
33 x 11, respectively. The results, which are presented in Table 1, indicate that the 
method is second-order accurate. 

To ensure that the iteration converges to the right solution, we compare the itera- 
tive solution with the solution computed by the direct method described in [17]. We 
cannot expect perfect agreement, because even though both methods are second- 
order accurate, they correspond to different sets of discrete approximations. Fur- 
thermore, the far-field boundary conditions are not the same in the two approaches. 
Hence, the difference between the solutions will only tend to zero as h2 if the com- 
putational domain is sufficiently large, so that effects from the far-field boundaries 
can be neglected. We use the same grids as described above. The solutions ob- 
tained with the direct solver are denoted odh ok h and ?d, respectively. The results, 
cf. Table 2, show that the difference between the solutions corresponding to the two 
methods tends to zero approximately as h2. The cpu-time required for solving these 
problems on a Sun 4/20 with 8 megabyte memory can be found in Table 3. 

Next, we study the convergence rate of the iterative method. In Tables 4-9 we 
present 10(k)-O(k-1)loc sur/101oc sur as function of k for different values of gu and for 

TABLE 1. Comparison between solutions computed with different 
grid sizes 

12h - qhloo,sur I | h - OhI oc,sur 

1.146 x 10- 4.609 x 10- 
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TABLE 2. Comparison between solutions computed with the iter- 
ative method and the direct method for different grid sizes 

kX2h - 52hIoo,sur | - | Vhoosur h - OhIoo,sur 

4.795 x 10- 3 2.497 x 10-3 1.343 x 10- 

TABLE 3. Cpu-time comparison between the iterative method and 
the direct method (seconds) 

2h \/2h h 
#of equations 1178 2202 4390_ 

iterative 13.1 25.1 53.9 
direct 16.6 102.4 826 

TABLE 4. Convergence rate, p - 0.8 

iteration q2h 2h Oh 

1 9.336 x 10-1 9.264 x 10-1 9.216 x 10- 
2 5.835 x 10-2 6.283 x 10-2 7.398 x 10-2 
3 9.789 x 10-3 1.097 x 10-2 4.748 x 10-3 

4 9.344 x 10-4 5.336 x 10-' 5.336 x 1F-4 

TABLE 5. Convergence rate, t = 0.7 

iteration 02h 2,/2h _______Oh 

1 9.502 x 10-1 9.547 x 10-l 9.554 x 10-l 
2 5.509 x 10-2 5.083 x 10-2 4.879 x 10-2 
3 3.756 x 10-3 3.306 x 10-3 3.174 x 10-3 

4 3.447 x 10-4 4.883 x 10-4 1.207 x 10-3 

5 * * 7.231 x 10-4 

TABLE 6. Convergence rate, ,u = 0.6 

iteration 02h 2h Oh 

1 9.561 x 10-1 9.619 x 10-1 9.561 x 10-1 
2 4.008 x 10-2 4.361 x 10-2 4.910 x 10-2 
3 2.209 x 10-3 2.597 x 10-3 3.211 x 10-3 
4 1.541 x i0- 1.029 x i0- 1.462 x i0- 

different grid sizes. The iteration is truncated when this quantity becomes less than 
10-3. The results confirm that the convergence rate improves when ,u decreases and 
that it is essentially independent of the grid size. 

In order to examine the effect of the far-field boundary conditions in the defi- 
nite subproblem and the truncation of the forcing function t(x) in the indefinite 
subproblem, we study how the solution depends on the size of the computational 
domain. We consider the lengths 1.2, 3.2 and 5.2, i.e., b = 0.6, 1.6, 2.6, respectively, 
and we denote the solutions on these grids by q1.2, o3.2 and o5.2, respectively. The 
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TABLE 7. Convergence rate, gi = 0.5 

iteration |2h ah _ Oh 

1 9.468 x 101- 9.540 x 10-1 9.588 x 101 
2 4.965 x 10-2 4.351 x 10-2 3.769 x 10-2 
3 5.370 x 10-3 4.544 x 10-3 3.860 x 10-3 

4 1.810 x I0- 3.459 x 10-4 6.479 x 10- 

TABLE 8. Convergence rate, gi = 0.4 

iteration 02h X h ___I__h 

1 9.737 x 10-1 9.764 x 10-1 9.783 x 10-1 
2 2.662 x 10-2 2.347 x 10-2 2.164 x 10-2 
3 6.189 x 10-4 3.799 x 10-4 2.982 x 10-4 

TABLE 9. Convergence rate, gi = 0.3 

iteration |2h Ah c Oh 

1 9.905 x 10-1 9.913 x 10-1 9.916 x 10-1 
2 9.861 x 10-3 9.022 x 10-3 8.111 x 10-3 

3 6.724 x i5 2.556x 04 x 7.020 x i04 

TABLE 10. Comparison between solutions corresponding to differ- 
ent lengths of the computational domain 

1X5.2 _ c1.21 sur 1 05.2 _ 3- osur 

8.455 x 10-3 5.220 x 10-4 

grid size in both directions of the the Cartesian grid was 1/33. We used 33 x 11 
grid points in the grid around the body. The results, given in Table 10, suggest 
that the influence of the far-field boundary conditions decays exponentially with 
the length of the computational domain. 
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